Волоконно-оптические линии связи и перспективы их развития

Конструкция и материалы

Определившись с тем, что такое оптоволокно, перейдем к описанию его устройства. Чтобы лучше понять структуру оптического волокна, рассмотрим процесс его производства:

  • нагретый кварцевый песок протягивают через сканер, проверяющий диаметр получающейся нити;
  • затем в камеру охлаждения;
  • и наконец в ванну с полимером, который налипает и формирует внешний защитный слой;
  • в конце вертикального конвейера находится бобина, на которую со скоростью 3 км/с наматывается остывшее волокно;
  • его транспортируют на завод, где осуществляется покраска каждой нити, чтобы их затем можно было различить в зависимости от канала передачи данных;
  • на специальном станке из них формируются пучки, которые затем запаиваются в кожух из полиэтилена;
  • пучки пережемаются с армирующим стеклопластиковым стержнем, а затем упаковываются во внешнюю изоляцию. Так формируется строение конструкции оптоволоконного кабеля.

  • сердечник из оптического волокна — самая хрупкая часть кабеля;
  • гидрофобный заполнитель обеспечивает защиту посредством амортизации;
  • эту конструкцию опоясывает центральная трубка;
  • промежуточная полиэтиленовая оболочка обеспечивает дополнительную защиту сердцевины;
  • как правило, в кабеле присутствует броня (существует множество разновидностей);
  • все перечисленные элементы закрывает наружная оболочка.

Структура оптического волокна

Оптическое волокно (оптоволокно) – это волновод с круглым поперечным сечением очень малого диаметра (сравним с толщиной человеческого волоса), по которому передается электромагнитное излучение оптического диапазона. Длины волн оптического излучения занимают область электромагнитного спектра от 100 нм до 1 мм, однако в ВОЛС обычно используется ближний инфракрасный (ИК) диапазон (760-1600 нм) и реже – видимый (380-760 нм). Оптическое волокно состоит из сердцевины (ядра) и оптической оболочки, изготовленных из материалов, прозрачных для оптического излучения (рис. 1).

Рис. 1. Конструкция оптического волокна

Свет распространяется по оптоволокну благодаря явлению полного внутреннего отражения. Показатель преломления сердцевины, обычно имеющий величину от 1,4 до 1,5, всегда немного больше, чем показатель преломления оптической оболочки (разница порядка 1%). Поэтому световые волны, распространяющиеся в сердцевине под углом, не превышающим некоторое критическое значение, претерпевают полное внутреннее отражение от оптической оболочки (рис. 2). Это следует из закона преломления Снеллиуса. Путем многократных переотражений от оболочки эти волны распространяются по оптическому волокну.

Рис. 2. Полное внутреннее отражение в оптическом волокне

На первых метрах оптической линии связи часть световых волн гасят друг друга вследствие явления интерференции. Световые волны, которые продолжают распространяться в оптоволокне на значительные расстояния, называются пространственными модами оптического излучения. Понятие моды описывается математически при помощи уравнений Максвелла для электромагнитных волн, однако в случае оптического излучения под модами удобно понимать траектории распространения разрешенных световых волн (обозначены черными линиями на рис. 2). Понятие моды является одним из основных в теории волоконно-оптической связи.

Виды

Существует множество видов оптоволоконных кабелей в зависимости от характера их применения. Они представлены в двух «режимах»: многомодовом и одномодовом.

Многомодовое волокно (MMF) имеет сердечники двух размеров: 50 мкм и 62,5 мкм. Широкое ядро позволяет передавать несколько потоков данных одновременно. В многомодовом волокне в качестве источника света используется светоизлучающий диод (LED) или лазер с вертикальной полостью, излучающий поверхность (VCSEL). Из-за высокой скорости рассеивания и затухания он обычно используется для передачи большого объема данных на относительно короткие расстояния .

Одномодовое волокно (SMF) имеет гораздо меньший диаметр сердцевины – 8,3 мкм или 9 мкм и единственный световой путь, который может проходить на большие расстояния. Одномодовые волокна обычно используются для более длинных участков, таких как сети передачи данных университетского городка, передачи кабельного телевидения и телекоммуникационные сети.

То, как будет прокладываться кабель, определяет его конструкцию. Наиболее распространенными типами оптических кабелей по их применению являются:

  • для внутреннего монтажа;
  • для установки в кабельные каналы, с броней или без нее;
  • для укладки в грунт;
  • подвесной, с тросом или без него;

Тип волокна определяет параметры брони, наличие подвесного троса и других характеристик оптического кабеля. Условия среды могут быть агрессивными, будь то грунт или вода. Наиболее частые поломки линии вызваны механическими повреждениями. Например, во время ремонтных работ кабель может быть поврежден крупногабаритными машинами, или подводные сети оборваны субмаринами или кораблями. Под каждый сценарий применения подбирается соответствующий вид кабеля.

Разделение длины волны[править | править код]

Разделение длины волны мультиплексированием (WDM, CWDM) — практика увеличения пропускной способности оптического волокна, добавлением новых каналов, при этом каждый новый канал работает на своей длине волны. Эту функцию выполняет мультиплексор, распределяя длины волны в передающем оборудовании и демультиплексор преобразующий сигнал каждой из длин волн в отдельности и совмещающий их в приёмном оборудовании. Используя технологию (WDM, CWDM), теперь коммерчески доступная полоса пропускания сигнала в одном волокне может быть расширена до 160 каналов. При этом возможна поддержка скоростей передачи информации на уровне нескольких терабит в секунду.

Преимущества и недостатки оптического волокна

Хотя оптическое волокно имеет преимущества в скорости и пропускной способности по сравнению с медным кабелем, стоит учитывать, что у него также есть и определенные недостатки. Вот преимущества и недостатки оптического волокна.

Преимущества оптического волокна

Большая пропускная способность & более высокая скорость—оптоволоконный кабель поддерживает чрезвычайно высокую пропускную способность и скорость. Большое количество информации, которое может быть передано на единицу оптоволоконного кабеля, является его наиболее значительным преимуществом.

Дешевка—длинные, непрерывные мили оптоволоконного кабеля могут быть сделаны дешевле, чем эквивалентные длины медного провода. С многочисленными поставщиками, борющимися за долю рынка, цена оптического кабеля обязательно упадет.

Тоньше и легче—оптическое волокно тоньше, и его можно вытянуть на меньшие диаметры, чем медный провод. Они имеют меньший размер и легкий вес, чем сопоставимый медный кабель, поэтому лучше подходят для мест, где требуется пространство.

Более высокая пропускная способность—поскольку оптические волокна намного тоньше, чем медные провода, больше волокон могут быть объединены в кабеле заданного диаметра. Это позволяет больше телефонных линий переходить по одному и тому же кабелю или большему каналу, проходящему через кабель в вашу кабельную телевизионную коробку.

Меньшая деградация сигнала—потеря сигнала в оптическом волокне меньше, чем в медном проводе.

Световые сигналы—в отличие от электрических сигналов, передаваемых по медным проводам, световые сигналы от одного волокна не влияют на сигналы других волокон в том же оптоволоконном кабеле. Это означает более четкие телефонные разговоры или прием на телевидении.

Долгий срок службы—оптические волокна обычно имеют более длительный жизненный цикл более 100 лет.

Недостатки оптического волокна

Низкая мощность—светоизлучающие источники ограничены низкой мощностью. Хотя излучатели высокой мощности доступны для улучшения энергопотребления, это добавит дополнительную стоимость.

Хрупкость—оптическое волокно довольно хрупкое и более уязвимо к повреждениям по сравнению с медными проводами. Лучше не скручивать и не сгибать оптоволоконные кабели слишком сильно.

Расстояние—расстояние между передатчиком и приемником должно быть коротким, или повторители необходимы для усиления сигнала.

Регенерация[править | править код]

В случаях, когда линия связи должна охватить расстояние большее чем то, на которое способна существующая технология, сигнал должен быть восстановлен в промежуточных пунктах при помощи ретрансляторов. Ретрансляторы добавляют существенную стоимость в систему связи поэтому проектировщики систем пытаются минимизировать их использование.

Последние достижения в производстве оптических волокон и в технологии оборудования, используемого для коммуникаций связи, существенно уменьшили деградацию сигнала в линии. В настоящее время регенерация (восстановление) оптического сигнала в линиях связи необходимо на расстояниях, превышающих несколько сотен километров. Это существенно уменьшило стоимость организации оптической сети, особенно по подводным участкам, там где стоимость и надежность ретрансляторов — один из ключевых факторов, определяющих работу целой кабельной системы. Главные достижения, вносящие свой вклад в эти технологии, это возможность управления дисперсией, и применяемые солитоновые излучатели, которые используя нелинейные эффекты в волокне, позволяют передавать сигнал без дисперсии по длинным кабелям, покрывающим большие расстояния.

Конструкция волоконно-оптического кабеля

Конструкция ВОК изменяется в зависимости от его типа и назначения при общем сходстве отдельных конструктивных элементов. Познакомимся с особенностями кабельной конструкции на примере оптоволоконного кабеля, изображенного на рисунке.

Волоконно-оптический кабель в разрезе

В центре конструкции виден силовой элемент из стеклопластикового прутка, предназначенный для демпфирования нагрузок, создаваемых при монтаже и эксплуатации. Волокна расположены внутри оптических модулей, оберегающих их от внешнего воздействия. Модули представляют собой пластиковые трубки, имеющие оптимальный диаметр для группирования нужного количества ОВ.

В состав ВОК входят один или несколько модулей, что зависит от общего числа волокон. Модульное группирование оптических волокон и их цветовая маркировка намного облегчают идентификацию каждого конкретного оптоволокна при монтаже муфт и расшивке оптоволоконного кабеля на кроссе.

Оптические модули покрыты водоотталкивающим гелем, предохраняющим от проникновения влаги. Бандажная лента из полиэтилена фиксирует оптические модули и не дает вытечь гелевому наполнителю.

Внутренняя полиэтиленовая оболочка является буферным слоем, разделяющим оптические модули и армирующую броню. В данном примере бронирование выполнено стальной оцинкованной проволокой, надежно защищающей от грызунов и экстремальных нагрузок.

Важнейшим элементом защиты является внешняя оболочка из негорючего высокоплотного полиэтилена. От надежности наружного покрытия зависит длительность безотказного функционирования оптоволоконного кабеля, что диктует строгие требования к технологии его производства.

Цена вопроса

Оптические линии связи давно перестали быть “диковинкой” и поэтому цены на комплектующие не то что вполне умеренные, а если не гнаться за “брендом” (Commscope, R&M и т.п.) – смешные: посмотрите ассортимент магазина “Связьстройдеталь”.

P.S. В заметке намеренно не приводил:

  • теоретическую информацию о том, как свет распространяется в волокнах, так как к практической области проектирования систем связи это имеет слабое применение (если конечно вы еще не разработчик SFP-модулей);
  • информацию о пластиковых/полимерных волокнах POF, которые обычно используют провайдеры GPON, хотя и у них встречаются интересные решения:

Передатчики[править | править код]

Модуль GBIC, (использовался в оборудовании для компьютерных сетей до 2000 года), являлся унифицированным преобразователем оптических сигналов в электрические и наоборот

Лазерный излучающий диод

Наиболее часто используемые оптические передатчики — это полупроводниковые приборы, свето излучающие диоды (СИД) и лазерные диоды. Различие между СИД и лазерными диодами в том, что СИД излучают не когерентное оптическое излучение, в то время как излучение лазерных диодов когерентно. Для использования в оптических коммуникациях полупроводниковые оптические передатчики должны быть компактным, эффективным, и надежным, работать в оптимальном диапазоне длин волн, и быть работоспособными на высоких частотах.

Явление, при котором при прохождении тока через открытый P/N переход в прямом направлении происходит излучение фотонов называют электролюминисценцией. Испускаемое при этом излучение является не когерентным с относительно широкой спектральной шириной 30-60 нм. Эффективность первых светоизлучающих диодов была невелика. Однако, из-за относительно простого устройства и недорого производства, светоизлучающие диоды СИД были идеальны при использовании в недорогих устройствах.

Светоизлучающие диоды СИД для волоконно-оптического оборудования обычно сделаны на базе фосфида арсенида галлия (GaAsP) или арсенида галлия (GaAs). Поскольку СИД на основе GaAsP излучают на более длинноволновых диапазонах, чем СИД на основе GaAs (1.3 микрометра против 0.81-0.87 микрометров), их спектр излучения имеет большую величину, приблизительно в 1.7. Большая ширина спектра СИД вызывает более высокую дисперсию излучения в волокне, значительно ограничивая этим скорость передачи информации. Излучатели на основе СИД наиболее подходят прежде всего для использования в локальных сетях со скоростями передачи информации 10-100 Mbit/s и расстояниями до нескольких километров. Современные СИД могут излучать на различных длинах волн и используются в настоящее время для локальной сетей построенных по технологии WDM (Wavelength Division Multiplexing).

Полупроводниковый лазер генерирует излучение посредством стимулируемой эмиссии, а не непосредственную эмиссии (как в светоизлучающих диодах), которая позволяет получать высокую выходную мощность сигнала (~100 мВт) а так-же имеет и другие преимущества, связанные с природой когерентного излучения. Излучение полупроводникового лазера относительно направленно, позволяя получать высокую эффективность при передаче сигнала в оптических одномодовых волокнах. Узкая спектральная ширина излучения позволяет получать высокие скорости передачи информации, так как это связано с уменьшением эффекта модовой дисперсии. Кроме того, полупроводниковые лазеры легко могут быть промодулированы в области высоких частот из-за короткого времени рекомбинации носителей заряда в P/N переходе.

Непосредственное модулирование сигналом светоизлучающего диода позволяет строить относительно простые преобразователи электрических сигналов в оптические.

Принцип работы волоконно-оптического кабеля

Принцип работы волоконно-оптического кабеля базируется на передаче модулированного светового потока, инициируемого лазером или специальным светодиодом в составе оптического трансивера. Электрические сигналы преобразуются в свет на одном конце ВОК, передаются по оптоволокну и принимаются на другом конце кабеля. На приеме свет конвертируется в исходные электрические сигналы.

Разработчики оптического волокна нашли гениальное решение, разделив его на сердцевину и оболочку с разными показателями преломления света. Лазерное излучение проходит по сердцевине, отражаясь от оболочки, что способствует минимальным потерям мощности даже на протяженных магистралях. Физические параметры полученного световода легко рассчитываются, позволяя изготавливать оптоволоконные кабели с заданными характеристиками, предназначенные для решения конкретных задач.

Дальность распространения световых импульсов ограничивается затуханием и дисперсией. Причинами затухания в оптическом кабеле являются внутренние отражения, рассеяние и поглощение. Дисперсия приводит к искажению исходной формы сигналов, а именно к увеличению их длительности.

Современные ВОК имеют параметры, предоставляющие возможность передавать сигналы на расстояние до 100 км. Учитывая эти ограничения, на магистральных трактах через каждые 80 — 100 км устанавливаются регенерационные пункты, в которых полностью восстанавливается исходный сигнал. Таким образом, можно строить линии связи в несколько десятков тысяч километров.

Волоконно-оптические кабели разделяются на разные типы, что важно понимать при выборе ВОК для индивидуального проекта. Зная типовые особенности оптоволоконного кабеля, можно без труда подобрать наиболее подходящий вариант

Что входит в волоконно-оптическую связь?

Волоконно-оптические линии представляют собой целую систему, в которую входит ряд устройств.

К основным из них следует отнести следующие аппараты:

  • приемник;
  • передатчик;
  • предусилитель;
  • микросхема, предназначенная для синхронизации и восстановления информации;
  • блок преобразовательного кода в параллельный и сам преобразователь;
  • лазерный формирователь;
  • кабель.

На сегодняшний день существует два типа волокна. Это одномодовое и многомодововое. Уже из их названия становится известен принцип работы.

Если в первом распространяется только один луч, то во втором – много. Это обусловлено непосредственно показателем преломления. В одномодовом волокне он равен длине световой волны, а в многомодовым несколько больше.

Стоит отметить, что для обоих типов характерны два наиболее важных показателя: дисперсия и затухание.

Кабельная конструкция

Одним из недостатков оптических волокон, как было указано выше, является их относительная хрупкость, поэтому для защиты применяются различные технологии (в зависимости от сферы применений). Для административных зданий типовой выбор – с плотным буфером (tight buffer) с усилением кевларовыми нитями.

Пара слов о буфере, который первым “защищает” световод (волокно в первичном покрытии) и бывает 3-х видов:

  • плотный (tight buffer) – cлой покрытия непосредственно прилегает к световоду, на который нанесено первичное покрытие. Минусы возникают при длительном хранении – буферное покрытие становится хрупким и плохо очищается, что вызвало появление других типов буфера, хотя материалы для плотного буфера развиваются и данный тип оболочки становится универсальным (есть сомнения при выборе буфера );
  • полуплотный (semi-tight buffer) – между буфером и световодом с первичным покрытием есть небольшой зазор, который позволяет волокну скользить в нем. Данный тип волокна не годится для коммутационных шнуров и монтажники сразу должны знать, что будут варить полуплотный буфер;
  • свободный (loose tube) – между световодом в первичном покрытии и буфером есть большой зазор. Применяется в основном для наружной прокладки, ставить клеевые коннекторы на такие кабели нельзя.

Информация утащена отсюда.

Остальные нюансы – аналогично электрическим кабелям, разве что вопрос с экранированием не стоит

Если у кабеля есть броня, то на вводе в здание ее нужно заземлить – для этого можно применить ВКР-1 производства «Связьстройдеталь» или Scotchlok 4460-D/FO производства 3M.

Отмечу, что использование специальных лотков для оптических кабелей на мой взгляд похоже на выманивание денег, так как стоят они ровно в 10 раз дороже, чем обычные проволочные.

Классификация волоконно-оптических кабелей и спектр их применения

Волоконно-оптические кабели бывают трех видов:

  • уличные кабели(outdoor cables);
  • кабели для помещений (indoor cables);
  • Кабели для шнуров .

Outdoor cables общего применения незаменимы при организации подсистемы, связывающей отдельные объекты, indoor cables используются для прокладки внутри строений и объектов. Что касается кабелей для шнуров, то они нужны при горизонтальной разводке кабелей до комнаты или до рабочего места. Их также используют для изготовления шнуров, соединительных и коммутационных.

Если брать за основу условия эксплуатации, оптоволоконные кабели бывают:

  • магистральные;
  • монтажные;
  • станционные;
  • зоновые.

Станционные и монтажные легкие, компактные и короткие по длине, используются при прокладке магистрали внутри объектов и зданий. Зоновые и монтажные незаменимы при организации сети под водой, в колодцах и грунте, на опорах вдоль линий электропередач. Их строительная длина — больше 2 км, внешняя оболочка прочная, хорошо защищает сердцевину от внешних воздействий.

Вначале оптоволоконные кабели использовались исключительно в узкоспециализированных областях, для систем освещения они считались дорогостоящими и нерентабельными. Новые технологии значительно удешевили оптические волокна, что позволяет применять их где угодно: в телефонии, компьютерных сетях и магистралях общего пользования.

Особенности проектирования и монтажа волоконно-оптической связи

Проектирование волоконно-оптических линий связи является сложным и трудоемким процессом, который должен учитывать целый ряд особенностей, начиная от технической возможности проведения трассы и заканчивая количеством основного и вспомогательного оборудования, которое будет соединено в рамках сети.

Процесс проектирования и разработки линии связи можно разделить на несколько стадий:

  • определение технической возможности установки;
  • выбор типа кабеля и его длины;
  • проведение технических расчетов на предмет выявления величины коэффициента затухания сигнала, и других важных показателей;
  • выбор необходимой аппаратуры и вспомогательных средств для обеспечения бесперебойной работы сети и соответствия стандартам передачи информации;
  • проектирование и прокладка трассы. Монтаж волоконно-оптических линий связи может производиться двумя способами – навесным (кабель прокладывается по воздуху на уже существующих либо новых технических опорах) или подземным (для этого необходимо проделать специальные земельные работы). Выбор способа прокладки трассы зависит от климатического пояса, атмосферных условий (степень промерзания почвы, солнечная или ветровая активность), рельефа местности и других факторов;
  • подготовка необходимой технической документации с указанием количества точек подключения, различные разветвления и общая трассировка (так называемая скелетная схема);
  • перечень конкретных технических и аппаратных средств, задействованных в создании работоспособной линии связи (стационарные терминалы, усилители, трансиверы, муфты ответвления и другое оборудование);
  • согласование проекта с заказчиком и проведение монтажных работ.

Одна из главных особенностей установки заключается в том, что волоконно-оптический канал связи в рамках проекта может достигать нескольких десятков километров, тогда как стандартная длина провода существенно меньше. Это предусматривает наличие соединений в рамках одной линии связи между сегментами кабеля.

Соединить два сегмента провода можно несколькими способами:

  • разъемное соединение (при помощи оптических коннекторов). У этого способа есть одно преимущество – работы происходят достаточно быстро и не требуют специального оборудования. Главный недостаток заключается в том, что это существенно удорожает стоимость линии связи и способствует увеличению потерь сигнала при использовании большого количества соединительных элементов;
  • неразъемный способ. Здесь существует несколько вариантов, среди которых склеивание и сварка волоконно-оптических линий связи. Эти процессы довольно трудоемкие и требуют специального оборудования и практических навыков, но итогом является практически полное отсутствие потерь скорости передачи и монолитное соединение кабелей.

Волоконно-оптические линии связи, используемое оборудование для которых соответствует мировым стандартам, способны служить на протяжении полувека без видимой потери качества сигнала.

Оптический кабель для прокладки в грунт

Самый суровый вариант прокладки кабеля — непосредственно в грунт без какой-либо дополнительной защиты (рис 4). Оптические кабели в своей конструкции имеют броню в виде стальной оцинкованной или канатной проволоки, одного либо двух повивов, в зависимости от требуемых характеристик. Обеспечивается защита как от поперечного сдавливания, так и от растягивающих нагрузок.

Рис. 4 ОК для прокладки в грунт (проволочная броня)

Когда необходим кабель с похожими характеристиками, но при этом полностью диэлектрический, то в конструкции вместо проволоки используется броня из стеклопластиковых прутков (рис. 5).

Рис. 5 ОК для прокладки в грунт (диэлектрический)

Монтаж

Процесс подключения Интернета через оптоволокно сложнее, чем кажется на первый взгляд. Все преимущества скорости света заключены в хрупком сердечнике, требующего бережного отношения. По сравнению с медной витой парой, обслуживание таких коммуникаций требует повышенной квалификации работников, занятых монтажными работами и подключением абонентского оборудования. Особенно это касается профессиональных бригад, обслуживающих магистрали провайдера. Будь то срочный ремонт или плановое подключение участка — сетевой инженер всегда имеет при себе целый набор инструментов для обслуживания оптоволоконного кабеля для Интернета.


Продвинутые модели оснащены ЧПУ, который регулирует угол и наклон сварки для достижения наилучшего результата. Проблема заключается в том, что даже небольшая погрешность может оказать негативное влияние на скорость передачи данных по оптоволокну.

Процесс монтажа:

  1. Сначала необходимо подготовить кабель. При помощи специального инструмента срезается внешняя и внутренняя изоляция, а также зачищается сердечник. 
  2. Зачищенное волокно необходимо обработать спиртосодержащим веществом, а затем укоротить до нужной длины при помощи резака.

    Затем место сварки покрывается термоусадкой и нагревается до высокой температуры.

  3. Для подключения готового кабеля к конечному оборудованию его нужно обжать. Процесс обжима оптоволокна различается в зависимости от его типа. Если говорить о бытовом использовании, то в продаже можно найти готовые патч-корды.

Кварцевое одномодовое волокно

В одномодовом волокне, как следует из названия, распространяется только одна (основная) мода излучения. Это достигается за счет очень маленького диаметра сердцевины (обычно 8-10 мкм). Диаметр оптической оболочки такой же, как и у многомодового волокна – 125 мкм. Отсутствие других мод положительно сказывается на характеристиках оптоволокна (нет межмодовой дисперсии), увеличивая дальность передачи без ретрансляции до сотен километров и скорость до десятков Гбит/с (приводим стандартные значения, а не те «рекордные», которые достигаются в исследовательских лабораториях). Затухание в одномодовом волокне также крайне низкое (менее 0,4 дБ/км).

Диапазон длин волн для одномодового волокна достаточно широк. Обычно передача осуществляется на длинах волн 1310 и 1550 нм. При использовании технологии спектрального уплотнения каналов используются и другие длины волн (об этом чуть ниже).

Классификация. Ассортимент кварцевых одномодовых волокон весьма разнообразен. Международный стандарт ISO/IEC 11801 и европейский EN 50173 по аналогии с многомодовым волокном выделяют два больших класса одномодовых волокон: OS1 и OS2 (OS – Optical Single-mode). Однако в связи с существующей путаницей, связанной с этим делением, не рекомендуем ориентироваться на эту классификацию. Гораздо более информативными являются рекомендации ITU-T G.652-657, выделяющие больше типов одномодовых волокон.

В таблице ниже представлена краткая характеристика этих волокон и их применение. Но прежде – пара комментариев. Межмодовая дисперсия, отсутствующая в одномодовом волокне, является не единственным механизмом уширения оптического импульса. В одномодовом волокне на первый план выходят другие механизмы, прежде всего, хроматическая дисперсия, связанная с тем, что ни один источник излучения (даже лазер) не испускает строго монохроматичное излучение. При этом существует длина волны, при которой коэффициент хроматической дисперсии равен нулю. В большинстве случае работа на этой длине волны оказывается предпочтительной, но не всегда.

Тип волокна Описание Применение
G.652. Одномодовое волокно с несмещенной дисперсией Наиболее распространенный тип одномодового волокна с точкой нулевой дисперсии на длине волны 1300 нм. Различают 4 подкласса (A, B, C и D). Волокна G.652.C и G.652.D отличаются низким затуханием вблизи «водного пика» («водным пиком» называют область большого затухания в стандартном волокне около длины волны 1383 нм). Стандартные области применения.
G.653. Одномодовое волокно с нулевой смещенной дисперсией Точка нулевой дисперсии смещена на длину волны 1550 нм. Передача на длине волны 1550 нм.
G.654. Одномодовое волокно со смещенной длиной волны отсечки Длина отсечки (минимальная длина волны, при которой волокно распространяет одну моду) смещена в область длин волн около 1550 нм. Передача на длине волны 1550 нм на очень большие расстояния. Магистральные подводные кабели.
G.655. Одномодовое волокно с ненулевой смещенной дисперсией Это волокно имеет небольшое, но не нулевое, значение дисперсии в диапазоне 1530-1565 нм (ненулевая дисперсия уменьшает нелинейные эффекты при одновременном распространении нескольких сигналов на разных длинах волн). Линии передачи со спектральным уплотнением каналов (DWDM).
G.656. Одномодовое волокно c ненулевой смещенной дисперсией для широкополосной передачи Ненулевая дисперсия в диапазоне длин волн 1460-1625 нм. Линии передачи со спектральным уплотнением каналов (CWDM/DWDM).
G.657. Одномодовое волокно, не чувствительное к потерям на макроизгибе Волокно с уменьшенным минимальным радиусом изгиба и с меньшими потерями на изгибе. Выделяют несколько подклассов. Для прокладывания в ограниченном пространстве.

Применение. Одномодовое кварцевое волокно, безусловно, является самым распространенным типом оптоволокна. С его помощью можно организовать передачу высокоскоростного сигнала на очень большие расстояния, а применение технологии спектрального уплотнения каналов (CWDM/DWDM) позволяет в разы увеличить пропускную способность линии связи. Одномодовое волокно часто применяется и на коротких дистанциях, например, в локальных сетях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector