Конвертер величин

Общие сведения. Физические свойства времени

Часы фирмы Seiko на улице близ железнодорожного Вокзала Осака, Япония

Время можно рассматривать двояко: как математическую систему, созданную, чтобы помочь нашему пониманию Вселенной и течения событий, или как измерение, часть структуры Вселенной. В классической механике время не зависит от других переменных и ход времени постоянен. Теория относительности Эйнштейна, наоборот, утверждает, что события, одновременные в одной системе отсчета, могут происходить асинхронно в другой, если она в движении по отношению к первой. Это явление называется релятивистским замедлением времени. Вышеописанная разница во времени значительна при скоростях, близких к скорости света, и была экспериментально доказана, например, в эксперименте Хафеле-Китинга. Ученые синхронизировали пять атомных часов и оставили одни неподвижным в лаборатории. Остальные часы дважды облетели вокруг Земли на пассажирских самолетах. Хафеле и Китинг обнаружили, что «часы-путешественники» отстают от стационарных часов, как и предсказывает теория относительности. Воздействие гравитации, так же, как и увеличение скорости, замедляет время.

Общие сведения. Физические свойства времени

Часы фирмы Seiko на улице близ железнодорожного Вокзала Осака, Япония

Время можно рассматривать двояко: как математическую систему, созданную, чтобы помочь нашему пониманию Вселенной и течения событий, или как измерение, часть структуры Вселенной. В классической механике время не зависит от других переменных и ход времени постоянен. Теория относительности Эйнштейна, наоборот, утверждает, что события, одновременные в одной системе отсчета, могут происходить асинхронно в другой, если она в движении по отношению к первой. Это явление называется релятивистским замедлением времени. Вышеописанная разница во времени значительна при скоростях, близких к скорости света, и была экспериментально доказана, например, в эксперименте Хафеле-Китинга. Ученые синхронизировали пять атомных часов и оставили одни неподвижным в лаборатории. Остальные часы дважды облетели вокруг Земли на пассажирских самолетах. Хафеле и Китинг обнаружили, что «часы-путешественники» отстают от стационарных часов, как и предсказывает теория относительности. Воздействие гравитации, так же, как и увеличение скорости, замедляет время.

Примеры разных скоростей

Четырехмерная скорость

В классической механике векторная скорость измеряется в трехмерном пространстве. Согласно специальной теории относительности, пространство — четырехмерное, и в измерении скорости также учитывается четвертое измерение — пространство-время. Такая скорость называется четырехмерной скоростью. Ее направление может изменяться, но величина постоянна и равна c, то есть скорости света. Четырехмерная скорость определяется как

U = ∂x/∂τ,

где x представляет мировую линию — кривую в пространстве-времени, по которой движется тело, а τ — «собственное время», равное интервалу вдоль мировой линии.

Лунный скафандр в экспозиции Космического центра имени Кеннеди

Групповая скорость

Виндсерфинг. Майами Бич.

Групповая скорость — это скорость распространения волн, описывающая скорость распространения группы волн и определяющая скорость переноса энергии волн. Ее можно вычислить как ∂ω/∂k, где k — волновое число, а ω — угловая частота. K измеряют в радианах/метр, а скалярную частоту колебания волн ω — в радианах в секунду.

Гиперзвуковая скорость

Гиперзвуковая скорость — это скорость, превышающая 3000 метров в секунду, то есть во много раз выше скорости звука. Твердые тела, движущиеся с такой скоростью, приобретают свойства жидкостей, так как благодаря инерции, нагрузки в этом состоянии сильнее, чем силы, удерживающие вместе молекулы вещества во время столкновения с другими телами. При сверхвысоких гиперзвуковых скоростях два столкнувшихся твердых тела превращаются в газ. В космосе тела движутся именно с такой скоростью, и инженеры, проектирующие космические корабли, орбитальные станции и скафандры, должны учитывать возможность столкновения станции или космонавта с космическим мусором и другими объектами при работе в открытом космосе. При таком столкновении страдает обшивка космического корабля и скафандр. Разработчики оборудования проводят эксперименты столкновений на гиперзвуковой скорости в специальных лабораториях, чтобы определить, насколько сильные столкновения выдерживают скафандры, а также обшивка и другие части космического корабля, например топливные баки и солнечные батареи, проверяя их на прочность. Для этого скафандры и обшивку подвергают воздействию ударов разными предметами из специальной установки со сверхзвуковыми скоростями, превышающими 7500 метров в секунду.

Автор статьи: Kateryna Yuri

Календари

Календари состоят из одного или нескольких уровней циклов, таких как дни, недели, месяцы и годы. Их делят на лунные, солнечные, лунно-солнечные.

Лунные календари

Лунные календари основаны на фазах Луны. Каждый месяц — один лунный цикл, а год — 12 месяцев или 354,37 дней. Лунный год короче солнечного года, и, как следствие, лунные календари синхронизируются с солнечным годом только один раз в каждые 33 лунных года. Один из таких календарей — Исламский. Его используют в религиозных целях и как официальный календарь в Саудовской Аравии.

Покадровая съемка. Расцветающий цикламен. Двухнедельный процесс сжат до двух минут.

Солнечные календари

Солнечные календари основаны на движении Солнца и временах года. Их система отсчета — солнечный или тропический год, то есть время, необходимое Солнцу для завершения одного цикла времен года, например, от зимнего солнцестояния до зимнего солнцестояния. Тропический год равен 365,242 дням. Из-за прецессии земной оси, то есть, медленного изменения в положении оси вращения Земли, тропический год примерно на 20 минут короче, чем время, необходимое Земле для одного оборота по орбите вокруг Солнца относительно неподвижных звезд (сидерический год). Тропический год постепенно становится короче на 0,53 секунды каждые 100 тропических лет, поэтому в будущем, вероятно, нужна будет реформа, чтобы синхронизировать солнечные календари с тропическим годом.

Наиболее известный и широко используемый солнечный календарь — григорианский. Он основан на юлианском календаре, который, в свою очередь, основан на старом римском. Юлианский календарь предполагает, что год состоит из 365,25 дней. На самом деле, тропический год на 11 минут короче. В результате этой неточности, к 1582 году юлианский календарь ушел на 10 дней вперед, по сравнению с тропическим годом. Григорианский календарь стали использовать, чтобы исправить это несоответствие, и постепенно он заменил другие календари во многих странах. В некоторых местах, в том числе в православной церкви, до сих пор используют юлианский календарь. К 2013 году разница между юлианским и григорианским календарями составляет 13 дней.

Чтобы синхронизировать 365-дневный григорианский год с 365,2425-дневным тропическим, в григорианском календаре добавляют високосный год длиной 366 дней. Это делается каждые четыре года, за исключением годов, которые делятся на 100, но не делятся на 400. Например, 2000 год был високосным, а 1900 — нет.

Покадровая съемка. Расцветающие орхидеи. Трехдневный процесс сжат до полутора минут.

Лунно-солнечные календари

Лунно-солнечные календари — сочетание лунного и солнечного календарей. Обычно месяц в них равен лунной фазе, и месяцы чередуются между 29 и 30 днями, так как приблизительная средняя длина лунного месяца — 29,53 день. Чтобы синхронизировать лунно-солнечный календарь с тропическим годом, каждые несколько лет к году лунного календаря добавляется тринадцатый месяц. Например, в еврейском календаре тринадцатый месяц прибавляется семь раз в течение девятнадцати лет — это называется 19-летним циклом, или метоновым циклом. Китайский и индуистский календари — также примеры лунно-солнечных календарей.

Прочие календари

Другие типы календарей основаны на астрономических явлениях, таких как движение Венеры, или исторических событиях, таких как смена правителей. Например, японское летоисчисление (年号 нэнго, буквально, название эры), используется в дополнение к григорианскому календарю. Название года соответствует названию периода, который также называется девизом императора, и году правления императора этого периода. При вступлении на престол, новый император утверждает свой девиз, и начинается отсчет нового периода. Девиз императора позже становится его посмертным именем. Согласно этой схеме, 2013 год называется Хэйсэй 25, то есть, 25-й год правления императора Акихито периода Хэйсэй.

Автор статьи: Kateryna Yuri

Общие сведения

Поезд в движении. Железнодорожный вокзал в Симферополе, Крым, Россия.

Скорость — мера измерения пройденного расстояния за определенное время. Скорость может быть скалярной величиной и векторной — при этом учитывается направление движения. Скорость движения по прямой линии называется линейной, а по окружности — угловой.

Измерение скорости

Среднюю скорость v находят, поделив общее пройденное расстояние ∆x на общее время ∆t: v = ∆x/∆t.

В системе СИ скорость измеряют в метрах в секунду. Широко используются также километры в час в метрической системе и мили в час в США и Великобритании. Когда кроме величины указано и направление, например 10 метров в секунду на север, то речь идет о векторной скорости.

Скорость движущихся с ускорением тел можно найти с помощью формул:

  • Тело, движущееся с постоянным ускорением a, с начальной скоростью u в течении периода ∆t, имеет конечную скорость v = u + a×∆t.
  • Тело, движущееся с постоянным ускорением a, с начальной скоростью u и конечной скоростью v, имеет среднюю скорость ∆v = (u + v)/2.

Измерение времени

Часы на железнодорожном вокзале Осака, Япония

Часы определяют текущее время в единицах, меньших чем одни сутки, в то время как календари — это абстрактные системы, представляющие более длительные интервалы времени, такие как дни, недели, месяцы и годы. Самая маленькая единица времени — секунда, одна из семи единиц СИ. Эталон секунды это: «9192631770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133».

Механические часы

Часы на железнодорожном вокзале Осака, Япония

Механические часы обычно измеряют число циклических колебаний событий заданной длины, как, например, колебания маятника, совершающего одно колебание в секунду. Солнечные часы отслеживают движение Солнца по небу в течение дня и отображают время на циферблате при помощи тени. Водяные часы, широко использовавшиеся в древности и в средние века, измеряют время при помощи переливания воды между несколькими сосудами, в то время как песочные часы используют песок и аналогичные материалы.

Фонд Long Now в Сан-Франциско разрабатывает 10000-летние часы под названием Clock of the Long Now, которые должны просуществовать и остаться точными на протяжении десяти тысяч лет. Проект направлен на создание простой, понятной и удобной в обращении и ремонте конструкции. В конструкции часов не будут применяться драгоценные металлы. В настоящее время конструкция предполагает обслуживание человеком, включая завод часов. Время отслеживается при помощи двойной системы, состоящей из неточного, но надежного механического маятника и ненадежной (из-за погоды), но точной линзы, которая собирает солнечный свет. На момент написания статьи (январь 2013 года) строится опытный образец этих часов.

Первый опытный образец часов Clock of the Long Now. 1999 год. Музей науки. Лондон

Атомные часы

Часы на железнодорожном вокзале Осака, Япония

В настоящее время атомные часы — это самые точные приборы измерения времени. Их используют для обеспечения точности при радиовещании, в глобальных навигационных спутниковых системах, и во всемирном измерении точного времени. В таких часах тепловые колебания атомов замедляются путем их облучения светом лазеров соответствующей частоты до температуры, близкой к абсолютному нулю. Счет времени осуществляется с помощью измерения частоты излучения, возникающего в результате перехода электронов между уровнями, причем частота этих колебаний зависит от электростатических сил между электронами и ядром, а также от массы ядра. В настоящее время наиболее распространенные атомные часы используют атомы цезия, рубидия, или водорода. Атомные часы, основанные на цезии — наиболее точные в долгосрочном использовании. Их погрешность составляет менее одной секунды за миллион лет. Водородные атомные часы примерно в десять раз более точны в течение более коротких отрезков времени, до недели.

Другие приборы измерения времени

Часы на железнодорожном вокзале Осака, Япония

Среди других измерительных приборов — хронометры, измеряющие время с точностью, достаточной для использования в навигации. С их помощью определяют географическое положение, основываясь на положении звезд и планет. Сегодня хронометр обычно имеется на судах в качестве резервного навигационного устройства, и морские специалисты знают, как пользоваться им в навигации. Однако глобальные навигационные спутниковые системы применяются чаще, чем хронометры и секстанты.

Всемирное координированное время

Водяные часы на вокзале Осака, Япония

Во всем мире всемирное координированное время (UTC) используется как универсальная система измерения времени. Оно основано на системе Международного атомного времени (TAI), которая для расчета точного времени использует средневзвешенное время более 200 атомных часов, расположенных по всему миру. С 2012 года TAI на 35 секунд опережает UTC, потому что UTC, в отличие от TAI, использует средние солнечные сутки. Так как солнечный день немного длиннее 24 часов, для координации UTC с солнечным днем к UTC добавляются секунды координации. Иногда эти секунды координации вызывают различные проблемы, особенно в сферах, где используются компьютеры. Чтобы подобные проблемы не возникали, некоторые учреждения, такие как отдел серверов в компании Гугл, вместо секунд координации используют «високосное смазывание» — удлинение ряда секунд на миллисекунды, чтобы в сумме эти удлинения были равны одной секунде.
UTC основано на показаниях атомных часов, в то время как среднее время по Гринвичу (GMT) основано на длине солнечного дня. GMT является менее точным, потому что оно зависит от периода вращения Земли, который непостоянен. GMT широко использовалось в прошлом, но теперь вместо него используют UTC.

Измерение времени

Часы на железнодорожном вокзале Осака, Япония

Часы определяют текущее время в единицах, меньших чем одни сутки, в то время как календари — это абстрактные системы, представляющие более длительные интервалы времени, такие как дни, недели, месяцы и годы. Самая маленькая единица времени — секунда, одна из семи единиц СИ. Эталон секунды это: «9192631770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133».

Механические часы

Часы на железнодорожном вокзале Осака, Япония

Механические часы обычно измеряют число циклических колебаний событий заданной длины, как, например, колебания маятника, совершающего одно колебание в секунду. Солнечные часы отслеживают движение Солнца по небу в течение дня и отображают время на циферблате при помощи тени. Водяные часы, широко использовавшиеся в древности и в средние века, измеряют время при помощи переливания воды между несколькими сосудами, в то время как песочные часы используют песок и аналогичные материалы.

Фонд Long Now в Сан-Франциско разрабатывает 10000-летние часы под названием Clock of the Long Now, которые должны просуществовать и остаться точными на протяжении десяти тысяч лет. Проект направлен на создание простой, понятной и удобной в обращении и ремонте конструкции. В конструкции часов не будут применяться драгоценные металлы. В настоящее время конструкция предполагает обслуживание человеком, включая завод часов. Время отслеживается при помощи двойной системы, состоящей из неточного, но надежного механического маятника и ненадежной (из-за погоды), но точной линзы, которая собирает солнечный свет. На момент написания статьи (январь 2013 года) строится опытный образец этих часов.

Первый опытный образец часов Clock of the Long Now. 1999 год. Музей науки. Лондон

Атомные часы

Часы на железнодорожном вокзале Осака, Япония

В настоящее время атомные часы — это самые точные приборы измерения времени. Их используют для обеспечения точности при радиовещании, в глобальных навигационных спутниковых системах, и во всемирном измерении точного времени. В таких часах тепловые колебания атомов замедляются путем их облучения светом лазеров соответствующей частоты до температуры, близкой к абсолютному нулю. Счет времени осуществляется с помощью измерения частоты излучения, возникающего в результате перехода электронов между уровнями, причем частота этих колебаний зависит от электростатических сил между электронами и ядром, а также от массы ядра. В настоящее время наиболее распространенные атомные часы используют атомы цезия, рубидия, или водорода. Атомные часы, основанные на цезии — наиболее точные в долгосрочном использовании. Их погрешность составляет менее одной секунды за миллион лет. Водородные атомные часы примерно в десять раз более точны в течение более коротких отрезков времени, до недели.

Другие приборы измерения времени

Часы на железнодорожном вокзале Осака, Япония

Среди других измерительных приборов — хронометры, измеряющие время с точностью, достаточной для использования в навигации. С их помощью определяют географическое положение, основываясь на положении звезд и планет. Сегодня хронометр обычно имеется на судах в качестве резервного навигационного устройства, и морские специалисты знают, как пользоваться им в навигации. Однако глобальные навигационные спутниковые системы применяются чаще, чем хронометры и секстанты.

Измерение времени

Часы на железнодорожном вокзале Осака, Япония

Часы определяют текущее время в единицах, меньших чем одни сутки, в то время как календари — это абстрактные системы, представляющие более длительные интервалы времени, такие как дни, недели, месяцы и годы. Самая маленькая единица времени — секунда, одна из семи единиц СИ. Эталон секунды это: «9192631770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133».

Механические часы

Часы на железнодорожном вокзале Осака, Япония

Механические часы обычно измеряют число циклических колебаний событий заданной длины, как, например, колебания маятника, совершающего одно колебание в секунду. Солнечные часы отслеживают движение Солнца по небу в течение дня и отображают время на циферблате при помощи тени. Водяные часы, широко использовавшиеся в древности и в средние века, измеряют время при помощи переливания воды между несколькими сосудами, в то время как песочные часы используют песок и аналогичные материалы.

Фонд Long Now в Сан-Франциско разрабатывает 10000-летние часы под названием Clock of the Long Now, которые должны просуществовать и остаться точными на протяжении десяти тысяч лет. Проект направлен на создание простой, понятной и удобной в обращении и ремонте конструкции. В конструкции часов не будут применяться драгоценные металлы. В настоящее время конструкция предполагает обслуживание человеком, включая завод часов. Время отслеживается при помощи двойной системы, состоящей из неточного, но надежного механического маятника и ненадежной (из-за погоды), но точной линзы, которая собирает солнечный свет. На момент написания статьи (январь 2013 года) строится опытный образец этих часов.

Первый опытный образец часов Clock of the Long Now. 1999 год. Музей науки. Лондон

Атомные часы

Часы на железнодорожном вокзале Осака, Япония

В настоящее время атомные часы — это самые точные приборы измерения времени. Их используют для обеспечения точности при радиовещании, в глобальных навигационных спутниковых системах, и во всемирном измерении точного времени. В таких часах тепловые колебания атомов замедляются путем их облучения светом лазеров соответствующей частоты до температуры, близкой к абсолютному нулю. Счет времени осуществляется с помощью измерения частоты излучения, возникающего в результате перехода электронов между уровнями, причем частота этих колебаний зависит от электростатических сил между электронами и ядром, а также от массы ядра. В настоящее время наиболее распространенные атомные часы используют атомы цезия, рубидия, или водорода. Атомные часы, основанные на цезии — наиболее точные в долгосрочном использовании. Их погрешность составляет менее одной секунды за миллион лет. Водородные атомные часы примерно в десять раз более точны в течение более коротких отрезков времени, до недели.

Другие приборы измерения времени

Часы на железнодорожном вокзале Осака, Япония

Среди других измерительных приборов — хронометры, измеряющие время с точностью, достаточной для использования в навигации. С их помощью определяют географическое положение, основываясь на положении звезд и планет. Сегодня хронометр обычно имеется на судах в качестве резервного навигационного устройства, и морские специалисты знают, как пользоваться им в навигации. Однако глобальные навигационные спутниковые системы применяются чаще, чем хронометры и секстанты.

Общие сведения. Физические свойства времени

Часы фирмы Seiko на улице близ железнодорожного Вокзала Осака, Япония

Время можно рассматривать двояко: как математическую систему, созданную, чтобы помочь нашему пониманию Вселенной и течения событий, или как измерение, часть структуры Вселенной. В классической механике время не зависит от других переменных и ход времени постоянен. Теория относительности Эйнштейна, наоборот, утверждает, что события, одновременные в одной системе отсчета, могут происходить асинхронно в другой, если она в движении по отношению к первой. Это явление называется релятивистским замедлением времени. Вышеописанная разница во времени значительна при скоростях, близких к скорости света, и была экспериментально доказана, например, в эксперименте Хафеле-Китинга. Ученые синхронизировали пять атомных часов и оставили одни неподвижным в лаборатории. Остальные часы дважды облетели вокруг Земли на пассажирских самолетах. Хафеле и Китинг обнаружили, что «часы-путешественники» отстают от стационарных часов, как и предсказывает теория относительности. Воздействие гравитации, так же, как и увеличение скорости, замедляет время.

[править] Ссылки

Основные единицы Ампер · Кандела · Кельвин · Килограмм · Метр · Моль · Секунда 
Производные единицы Беккерель · Ватт · Вебер · Вольт · Генри · Герц · Градус Цельсия · Грей · Джоуль · Зиверт · Катал · Кулон · Люкс · Люмен · Ньютон · Ньютон-метр · Ом · Паскаль · Радиан · Сименс · Стерадиан · Тесла · Фарад 
Принятые для использования
с СИ
Ангстрем · Астрономическая единица · Гектар · Градус дуги (Минута дуги, Секунда дуги) · Дальтон (Атомная единица массы) · Децибел · Квадратный метр · Литр, Кубический километр · Микрограмм (Миллиграмм) · Микросекунда (Миллисекунда, Наносекунда) · Микрометр (Нанометр, Миллиметр, Сантиметр, Фемтометр, Километр) · Непер · Сутки (Час, Минута) · Тонна · ЭлектронвольтАтомная система единиц · Естественная система единиц 
См. также Измерение · История метрической системы · Квантовая система единиц · Новые определения СИ · Планковская длина · Преобразование единиц · Приставки СИ · Произвольная единица · Система физических величин
Науки: Физика, История (Летоисчисление), Астрономия, Геология, Палеонтология
Основные понятия Время · Хронометрия · Шкала величин (время) · Метрология · Прошлое · Будущее 
Международные стандарты Всемирное координированное время (UTC) · Всемирное время (UT) · Международное атомное время (TAI) · ISO 31-1 · DUT1 · Секунда координации · Международная служба вращения Земли (IERS) · Земное время (TT) · Геоцентрическое координатное время (TCG) · Барицентрическое координатное время (TCB) · Гражданское время · Формат времени (12-часовой (AM/PM) · 24-часовой) · ISO 8601 · Линия перемены даты · Солнечное время · Часовой пояс (сокращение в РФ) · Летнее время (отмена в РФ, отмена на Украине, возврат зимнего времени в РФ) 
Устаревшие стандарты Эфемеридное время · Барицентрическое динамическое время (TDB) · Среднее время по Гринвичу (GMT) · Гринвичский меридиан 
Время Пространство-время · Хронон · Космологическая декада · Планковская эпоха · Планковское время · T-симметрия · Теория относительности · Релятивистское замедление времени · Гравитационное замедление времени · Время системы отсчёта · Собственное время · Time domain · Непрерывное время · Дискретное время · Абсолютное пространство и время 
Хорология Часы · Астрариум · Атомные часы · Песочные часы · Хронометр · Радиочасы · Солнечные часы · Наручные часы · Водяные часы · История часов · Уравнение времени · Complication 
Календарь Астрономический · Юлианский · Новоюлианский · Григорианский · Исламский · Лунно-солнечный · Солнечный · Лунный · Епакта · Интеркаляция · Високосный год · Тропический год · Равноденствие · Солнцестояние · Семидневная неделя · Дни недели · Алгоритм вычисления дня недели · Вруцелето 
Археология и геология Международная стратиграфическая комиссия · Геохронологическая шкала · Методы геохронологии · Датировка в археологии · Дендрохронология 
Хронология в астрономии Nuclear time scale · Прецессия · Звёздное время · Галактический год 
Единицы измерения времени Секунда (милли-, микро-, нано-) · Минута · Час · Сутки · Неделя · Декада · Фортнайт · Месяц · Квартал · Полугодие · Год · Люстр · Десятилетие · Век · Тысячелетие · Секулум · Шейк 
См. также Хронология · Длительность · Системное время · Метрическое время · Ментальное время · Стоимость денег с учётом фактора времени · Таймкипер · Декретное время · Сельскохозяйственный год · Нестандартные даты

Календари

Календари состоят из одного или нескольких уровней циклов, таких как дни, недели, месяцы и годы. Их делят на лунные, солнечные, лунно-солнечные.

Лунные календари

Лунные календари основаны на фазах Луны. Каждый месяц — один лунный цикл, а год — 12 месяцев или 354,37 дней. Лунный год короче солнечного года, и, как следствие, лунные календари синхронизируются с солнечным годом только один раз в каждые 33 лунных года. Один из таких календарей — Исламский. Его используют в религиозных целях и как официальный календарь в Саудовской Аравии.

Покадровая съемка. Расцветающий цикламен. Двухнедельный процесс сжат до двух минут.

Солнечные календари

Солнечные календари основаны на движении Солнца и временах года. Их система отсчета — солнечный или тропический год, то есть время, необходимое Солнцу для завершения одного цикла времен года, например, от зимнего солнцестояния до зимнего солнцестояния. Тропический год равен 365,242 дням. Из-за прецессии земной оси, то есть, медленного изменения в положении оси вращения Земли, тропический год примерно на 20 минут короче, чем время, необходимое Земле для одного оборота по орбите вокруг Солнца относительно неподвижных звезд (сидерический год). Тропический год постепенно становится короче на 0,53 секунды каждые 100 тропических лет, поэтому в будущем, вероятно, нужна будет реформа, чтобы синхронизировать солнечные календари с тропическим годом.

Наиболее известный и широко используемый солнечный календарь — григорианский. Он основан на юлианском календаре, который, в свою очередь, основан на старом римском. Юлианский календарь предполагает, что год состоит из 365,25 дней. На самом деле, тропический год на 11 минут короче. В результате этой неточности, к 1582 году юлианский календарь ушел на 10 дней вперед, по сравнению с тропическим годом. Григорианский календарь стали использовать, чтобы исправить это несоответствие, и постепенно он заменил другие календари во многих странах. В некоторых местах, в том числе в православной церкви, до сих пор используют юлианский календарь. К 2013 году разница между юлианским и григорианским календарями составляет 13 дней.

Чтобы синхронизировать 365-дневный григорианский год с 365,2425-дневным тропическим, в григорианском календаре добавляют високосный год длиной 366 дней. Это делается каждые четыре года, за исключением годов, которые делятся на 100, но не делятся на 400. Например, 2000 год был високосным, а 1900 — нет.

Покадровая съемка. Расцветающие орхидеи. Трехдневный процесс сжат до полутора минут.

Лунно-солнечные календари

Лунно-солнечные календари — сочетание лунного и солнечного календарей. Обычно месяц в них равен лунной фазе, и месяцы чередуются между 29 и 30 днями, так как приблизительная средняя длина лунного месяца — 29,53 день. Чтобы синхронизировать лунно-солнечный календарь с тропическим годом, каждые несколько лет к году лунного календаря добавляется тринадцатый месяц. Например, в еврейском календаре тринадцатый месяц прибавляется семь раз в течение девятнадцати лет — это называется 19-летним циклом, или метоновым циклом. Китайский и индуистский календари — также примеры лунно-солнечных календарей.

Прочие календари

Другие типы календарей основаны на астрономических явлениях, таких как движение Венеры, или исторических событиях, таких как смена правителей. Например, японское летоисчисление (年号 нэнго, буквально, название эры), используется в дополнение к григорианскому календарю. Название года соответствует названию периода, который также называется девизом императора, и году правления императора этого периода. При вступлении на престол, новый император утверждает свой девиз, и начинается отсчет нового периода. Девиз императора позже становится его посмертным именем. Согласно этой схеме, 2013 год называется Хэйсэй 25, то есть, 25-й год правления императора Акихито периода Хэйсэй.

Автор статьи: Kateryna Yuri

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector