История создания пилотной куртки ма-1

Содержание:

Определения

Электрический ток

Электрический ток I определяется как направленное движение электрических зарядов вдоль линии (например, тонкого провода), по поверхности (например, по листу проводящего материала) или в объеме (например, в электронной или газоразрядной лампе). В СИ единицей измерения силы электрического тока является ампер, определяемый как поток электрических зарядов через поперечное сечение проводника со скоростью один кулон в секунду.

Объемная плотность тока

Плотность тока (называемая также объемной плотностью тока) представляет собой векторное поле в трехмерном проводящем пространстве. В каждой точке такого пространства плотность тока представляет собой полный поток электрических зарядов в единицу времени, проходящий через единичное поперечное сечение. Обозначается объемная плотность векторным символом J. Если мы рассмотрим обычный случай проводника с током, то ток в амперах делится на поперечное сечение проводника. В СИ объемная плотность тока измеряется в амперах на квадратный метр (А/м²).

Например, если по мощной шине электрической подстанции с поперечным сечением 3 х 33,3 мм = 100 мм² = 0,0001 м² течет ток 50 ампер, то плотность тока в таком проводнике будет составлять 500 000 А/м².

Линейная плотность тока

Иногда в электронных устройствах ток течет через очень тонкую пленку металла или тонкий слой металла, имеющий переменную толщину. В таких случаях исследователей и конструкторов интересуют только ширина, а не общее поперечное сечение таких очень тонких проводников. В этом случае они измеряют линейную плотность тока — векторная величину, равную пределу произведения плотности тока проводимости, протекающего в тонком слое у поверхности тела, на толщину этого слоя, когда последняя стремится к нулю (это определение по ГОСТ 19880-74). В Международной системе единиц (СИ) линейная плотность тока измеряется в амперах на метр и в системе СГС в эрстедах. 1 эрстед равен напряжённости магнитного поля в вакууме при индукции 1 гаусс. Иначе линейную плотность тока определяют как ток, приходящийся на единицу длины в направлении, перпендикулярном току.

Например, если ток величиной 100 мА течет в тонком проводнике шириной 1 мм, то линейная плотность тока равна 0,0001 A : 0,001 m = 10 ампер на метр (А/м). Линейная плотность тока обозначается векторным символом А.

Поверхностная плотность тока

Линейная плотность тока тесно связана с понятием поверхностной плотности тока , которая определяется как сила электрического тока, протекающего через поперечное сечение проводящей среды единичной площади и обозначается векторным символом K. Как и линейная плотность тока, поверхностная плотность тока также является векторной величиной, модуль которой представляет собой электрический ток через поперечное сечение проводящей среды в данном месте, а направление перпендикулярно к площади поперечного сечения проводника. Такой проводящей средой может быть, например, проводник с током, электролит или ионизированный газ. В системе СИ плотность тока измеряется в амперах на квадратный метр.

Вектор или скаляр?

Отметим, что в отличие от векторной плотности тока, сам ток является скалярной величиной. Это можно объяснить тем фактом, что ток определяется как количество зарядов, перемещающихся в единицу времени; поэтому было бы нецелесообразно добавлять направление к величине, представляющей количество в единицу времени. В то же время, плотность тока рассматривается в объеме с множеством поперечных сечений, через которые проходит ток, поэтому имеет смысл определять плотность тока как вектор или как векторное пространство. Можно также отметить, что плотность тока является вектором в связи с тем, что это произведение плотности заряда на скорость его перемещения в любом месте пространства.

Сколько Ватт в 1 Ампере

Прямого ответа на это вопрос не существует, как нельзя сказать сколько метров в килограмме. Это разные физические величины. Но задающих этот вопрос можно понять и объяснить ситуацию.

Электрическая сеть, имеющая стабильное напряжение, например, 12 или 220 Вольт, при нагружении её определённым током отдаст чётко известную мощность. Так что ответ всё же имеется.

P=U*I=12*1=12 Вт

Например, если к автомобилю подключить лампочку, потребляющую 1 Ампер, то она будет выделять в виде света и тепла мощность в 12 Ватт.

Рассчитать это можно с помощью калькулятора или таблицы, в которые заложены известные из физики формулы.

Таблица для перевода Ватт/Амперы

Таблица имеет форму, в которой по вертикали расположены значения мощности, а по горизонтали – напряжение электросети. На пересечении строк и столбцов находятся числа, имеющие размерность силы тока в Амперах.

12В 24В 220В 380В
5 Вт 0,83А 0,42А 0,21А 0,02А 0,008А
6 Вт 1,00А 0,5А 0,25А 0,03А 0,009А
7 Вт 1,17А 0,58А 0,29А 0,03А 0,01А
8 Вт 1,33А 0,66А 0,33А 0,04А 0,01А
9 Вт 1,5А 0,75А 0,38А 0,04А 0,01А
10 Вт 1,66А 0,84А 0,42А 0,05А 0,015А
20 Вт 3,34А 1,68А 0,83А 0,09А 0,03А
30 Вт 5,00А 2,5А 1,25А 0,14А 0,045А
40 Вт 6,67А 3,33А 1,67А 0,13А 0,06А
50 Вт 8,33А 4,17А 2,03А 0,23А 0,076А
60 Вт 10,00А 5,00А 2,50А 0,27А 0,09А
70 Вт 11,67А 5,83А 2,92А 0,32А 0,1А
80 Вт 13,33А 6,67А 3,33А 0,36А 0,12А
90 Вт 15,00А 7,50А 3,75А 0,41А 0,14А
100 Вт 16,67А 3,33А 4,17А 0,45А 0,15А
200 Вт 33,33А 16,66А 8,33А 0,91А 0,3А
300 Вт 50,00А 25,00А 12,50А 1,36А 0,46А
400 Вт 66,66А 33,33А 16,7А 1,82А 0,6А
500 Вт 83,34А 41,67А 20,83А 2,27А 0,76А
600 Вт 100,00А 50,00А 25,00А 2,73А 0,91А
700 Вт 116,67А 58,34А 29,17А 3,18А 1,06А
800 Вт 133,33А 66,68А 33,33А 3,64А 1,22А
900 Вт 150,00А 75,00А 37,50А 4,09А 1,37А
1000 Вт 166,67А 83,33А 41,67А 4,55А 1,52А

Например, требуется узнать, какой ток потечёт через стартер автомобиля при максимальной его нагрузке, если заявленная мощность составляет 1 килоВатт или 1000 Ватт.

На пересечении строки «1000 Вт» и столбца «12 В» находится значение 83,33 Ампера. Это поможет при выборе проводов, они должны без особых потерь выдерживать такой ток.

Условное обозначение герконов

  • первый элемент — определяет условное наименование геркона. МК — магнитоуправляемый контакт герметизированный, КЭМ — контакт электромагнитный, КМГ — магнитоуправляемый контакт с повышенным контактным нажатием (для коммутации больших токов — более 5 А);
  • второй элемент — указывает на систему коммутации геркона: А — замыкающий, В — размыкающий, С — перекидной, Д — переходной;
  • третий элемент — буква «Р» присутствует только в ртутных герконах;
  • четвертый элемент — двузначное число показывает длину баллона в миллиметрах;
  • пятый элемент — указывает на функциональное назначение геркона: 1 — малой и средней мощности, 2 — повышенной мощности, 3 — мощные, 4 — высоковольтные, 5 — высокочастотные, 6 — «с памятью», 7 — специальные (с повышенной устойчивостью к внешним факторам и характеру нагрузки), 8 — измерительные.
  • шестой элемент — указывает порядковый номер разработки.

По типу контактов различают герконы замыкающие и переключающие, по состоянию поверхности контактов — сухие и жидкостные. Внутри баллона сухих герконов находятся инертные газы. Контакты представляют собой ферромагнитные пружины, покрытые ценными металлами. Герконы подразделяются также на маломощные (коммутируемая мощность до 60 Вт) и повышенной мощности (до 1000 Вт), низкочастотные и высокочастотные, низковольтные (коммутируемое напряжение до 250 В) и высоковольтные (свыше 250 В), имеются герконы с «памятью» и специальные. Далее приводим справочные параметры отечественных герконов, а в конце статьи — импортных герконов-реле.

Физиологические эффекты поражения электрическим током

Физиологические эффекты различны при определенных токах

Обратите внимание, что напряжение при этом не рассматривается. Электрический удар является относительно более сильным если ток растет

Для токов выше 10 миллиампер, мышечные схватки настолько сильны, что жертва не может отпустить провод, который шокирует его.

При значениях выше 20 миллиампер, дыхание становится затрудненным и, наконец, перестает полностью при значениях около 100 мА. Медики утверждают, что при токе 100 миллиампер у сердца происходит фибрилляция желудочков – несогласованное подергивание стенок желудочков сердца, что приводит к смерти. Чуть выше 200 миллиампер, мышечные сокращения настолько сильны, что мышцы сердца насильно сжимаются. Этот зажим защищает сердце от фибрилляции желудочков, и шансы жертвы на выживание увеличиваются.

В некоторых штатах США, в которых проводится в исполнение смертная казнь применяется электрический стул.  На электрическом стуле используется напряжение 2700 вольт и ток 5 ампер на 15 секунд. В правилах применения до трех циклов воздействия. Известны случаи, когда приговоренные осужденные после трех циклов использования электрического стула выживали.

 Какой ток безопасный

Таким образом, на вопрос «какой ток безопасный» не существует абсолютно четкого ответа.

При этом также надо помнить Закон Ома: ток равен напряжению, деленному на сопротивление. Сопротивление тела колеблется от Мом (мегаом) до кОм (килоом), в зависимости от типа кожи, сухости и места соприкосновения проводов на теле.

Преобразовать микроампер в миллиампер (мкА в мА):

С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘892 микроампер’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘микроампер’ или ‘мкА’. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Электрический ток’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: ’72 мкА в мА‘ или ‘4 мкА сколько мА‘ или ’83 микроампер -> миллиампер‘ или ’42 мкА = мА‘ или ’48 микроампер в мА‘ или ’74 мкА в миллиампер‘ или ’85 микроампер сколько миллиампер‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды. Кроме того, калькулятор позволяет использовать математические формулы

В результате, во внимание принимаются не только числа, такие как ‘(45 * 83) мкА’. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии

Например, такое сочетание может выглядеть следующим образом: ‘892 микроампер + 2676 миллиампер’ или ’64mm x 21cm x 33dm = ? cm^3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.

Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 1,303 209 988 140 8 × 10 31 . В этой форме представление числа разделяется на экспоненту, здесь 31, и фактическое число, здесь 1,303 209 988 140 8. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 1,303 209 988 140 8E+31. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 13 032 099 881 408 000 000 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.

Как правильно измерять электрический ток в амперах

Следует уточнить, что измерение тока — это измерение его основных характеристик (силы и напряжения). Чаще всего в лабораторных или школьных условиях измеряется сила тока на проводнике или во всей электрической цепи. Для этого используют специальный прибор — амперметр. Который на схемах правильно обозначается как окружность с латинской буквой «A» внутри.

При подключении амперметра следует соблюдать следующие правила:

  • Подключать в электрическую цепь только последовательно с тем участком цепи, на котором необходимо измерить силу тока. Иначе говоря, перед или после участка цепи для измерений.
  • Обязательно соблюдать «знаки» тока в цепи. Провод с «плюсом» от источника питания подключается к «плюсу» амперметра, а «минус» — к «минусу».
  • Стараться не превышать значение в шкале измерений, потому что в таком случае прибор может выйти из строя. Если амперметр с 2-мя шкалами, то используют ту, у которой больший предел допустимого значения.


Схема правильного включения амперметра в электрическую цепь При измерении сопротивления рекомендуется учитывать внутреннее сопротивление самого амперметра, которое указывается на нём. Но в школе им, как правило, пренебрегают.

Дополнительная информация! Для измерений может использоваться мультиметр — прибор, совмещающий в себе функционал измерения силы, мощности и прочих параметров тока. Для него используются всё те же правила включения в цепь, что и для амперметра.

Вам это будет интересно Определение падения напряжения

Как легко и просто пересчитать миллиамперы в амперы и наоборот

Достаточно часто на практике возникает необходимость пересчитать миллиамперы в амперы. У бывалых электриков с этим проблем не возникает. А вот начинающие специалисты такого профиля могут сразу и не ответить. В рамках данной статьи будут описаны простые и доступные способы выполнения данной операции.

Физическая величина

Ампер – это единица, которая количественно характеризует силу тока. Ее значение может быть определено путем проведения непосредственных замеров при помощи мультиметра, тестера или амперметра (прямой способ). Сила тока измеряется только путем последовательного включения в электрическую цепь измерительного прибора. Во втором случае ее значение можно узнать путем проведения расчетов (косвенный способ). Если известно напряжение, приложенное к участку цепи, а также его сопротивление, то достаточно разделить первое на второе — и мы получим необходимое значение. На практике не так часто используются амперы – это большая величина. Поэтому приходится применять кратные единицы – микро (10 -6 ) и милли (10 -3 ). А вот для проведения электротехнических расчетов нужно переводить их в основные единицы измерения.(например, миллиамперы в амперы). Рассмотрим следующий пример. Напряжение на участке цепи U = 6 В, а его сопротивление R = 100 Ом. Определим силу тока I на нем по закону Ома:

  • U – напряжение на участке цепи, В;
  • R – сопротивление этого же участка, Ом;
  • I – сила тока на нем, А.

В результате проведения расчетов получаем I = U/R = 6/100 = 0,06 А. Не совсем удобное число для восприятия. Поэтому его пересчитывают в кратные единицы измерения. В данном случае удобно представить это значение в миллиамперах. Для этого полученное значение 0,06 А умножаем на 1000 и получаем 60 мА. Можно сделать и обратный пересчет — миллиамперы в амперы. Для этого достаточно разделить 60 мА на 1000, и получим все те же 0,06 А. Из этого пересчета видно, сколько в ампере миллиампер — 1000. Поэтому делим или умножаем именно на это число. Если используется приставка «микро», то уже для перехода от одной единицы измерения к другой нужно умножать или делить на 1 000 000.

Методика измерений

Как было отмечено ранее, для измерения силы тока используются амперметры, мультиметры и тестеры. Наибольшую точность измерений обеспечивают первые из них. Они измеряют только одну величину и только в одной шкале. А это не совсем удобно. В свою очередь, мультиметры и тестеры позволяют измерять практически все электротехнические величины и не только в одном диапазоне. Также в этих приборах есть возможность переключения единиц измерения. Например, прибор показывает, что превышен диапазон. В таком случае нужно переключить миллиамперы в амперы и за счет этого узнать необходимое значение. Основной недостаток тестеров и мультиметров состоит в том, что в отличие от амперметров, погрешность у них значительно больше. Но все равно на практике их часто применяют, поскольку это позволяет легко и просто найти неисправность и устранить ее. Еще один важный нюанс, связанный с этими приборами: если раньше нужно было обязательно разрывать цепь, то сейчас появились тестеры и мультиметры, которые позволяют измерить силу тока бесконтактным способом, то есть без подключения. Подобное решение находит все большее применение на практике.

Резюме

Перевести миллиамперы в амперы можно двумя способами. Первый из них состоит в проведении арифметических расчетов с использованием специального коэффициента «1000» (количество миллиампер в ампере). Второй способ базируется на использовании специальных измерительных средств – тестера и мультиметра. На них есть специальные переключатели, которые позволяют без проблем преобразовать миллиамперы в амперы и наоборот. Какой из способов удобней, тот и используют на практике. Если есть возможность узнать заданное значение путем расчета, то используют именно этот способ. Иначе проводят замер, по результатам которого и узнают неизвестную величину.

Сколько миллиампер в 1 ампере?

В миллиамперах и амперах измеряется сила тока электрических цепей, а также мощность например зарядного тока или же емкость батарей(там еще добавляют время, т.е. часы, в течение которых аккумулятор может получить или отдать заряд).

Вообще в одном ампере 1000 мА, поэтому часто пишут на ЗУ не в миллиамперах ток, а в амперах, так ведь короче выходит

Для вашего удобства и для большей наглядности предлагаю вам воспользоваться данной табличкой, где вс очень ясно и просто:

Искомое нами значение можно легко определить, воспользовавшись информацией из первой строки. Так как в одном миллиампере будет 0,001 Ампер, то соответственно в одном ампере будет 1000 Ампер.

Итак, запомните, что в одном ампере будет содержаться тысяча миллиампер.

Ампер-единица с помошью которого измеряется сила электр. тока в междунароодной системе СИ.В одном ампере содержится 1000 миллиампер.Существует специальная таблица величин.

При расчетах важно не спутать микроамперы с миллиамперами. 1 Ампер = 1000 миллиампер

Эту формулу следует запомнить

1 Ампер = 1000 миллиампер. Эту формулу следует запомнить.

Также следует запомнить, что первая часть слова quot;миллиquot; означает quot;тысячаquot;. Можно выделить ее в сходных словах.

Не следует путать quot;миллиquot; и quot;микроquot;.

Сила электрического тока в 1 ампере равна 1000 миллиампер.

1 А = 1000 мА.

Обратите внимание! Иногда школьники путают миллиампер и микроампер, а это две разные единицы измерения. 1 миллиампер равен 1000 микроампер (1 мА = 1000 мкА)

Вспомним, что Ампер является единицей измерения силы электрического тока, вне зависимости от того, переменный он или постоянный. Именно в амперах и измеряется сила тока системе СИ.

Нас в школе учили и я до сих пор помню, что слово (приставка) -милли- означает — quot;тысячаquot; (один метр — 1000 мм, один кг — 1000 гр и тд).

Значит, в одном ампере 1000 миллиампер (1000 мА).

2 ампера — это 2000 миллиампер, 5 ампер — это 5000 мА и тд.

Базовая единица системы СИ для силы электрического тока — 1 Ампер. В 1 Ампере содержится 1000 миллиампер (принятое международное обозначение — мА).

Чтобы понять, что такое сила тока величиной в 1 мА, предлагаю рассмотреть следующий пример: когда человек вступает в контакт с электрическим источником, степень поражения будет напрямую зависеть от силы тока и длительности воздействия. Ток в 1 мА, скорее всего, вызовет слабое колючее ощущение, в то время как сила тока более, чем 2000 мА может привести к сердечной недостаточности и критическому повреждению органов.

И еще: приставка quot;миллиquot; — говорящая, в системе СИ она обозначает, исходное число в минус третьей степени.

Приставка quot;милли-quot; обозначает тысячную часть целого числа (когда умножают на 10 в -3 степени). В нашем случае, если умножить 1 ампер на 10 в -3, то получим 0,001, исходя из этого получается, что 1000 миллиампер равны 1 амперу.

Ровно одна тысяча миллиампер в одном ампере. Так же как в одном грамме — тысяча миллиграммов, также как в одном литре — тысяча (и не одним больше!) миллилитров. Милль — это тысяча, в переводе с французского языка.

Для того,чтобы не писать 1 с множеством нулей в международной системе единиц были введены приставки которые обозначают часть от целого числа.Приставки пишутся слитно с наименованием единицы или, соответственно, с е обозначением.Например нам надо узнать сколько миллиампер в одном ампере здесь используется приставка милли которая обозначает тысячную часть тоесть другими словами в 1А=1000 миллиампер.Большинство приставок происходят из древнегреческого языка но есть и французский датский и др языки отсюда такие названия

МКА-ПН1 (Зонд-ПП)

МКА-ПН1 (Зонд-ПП)
Заказчик ИРЭ РАН
Производитель НПО им. Лавочкина
Спутник Земли
Запуск 22 июля 6:41:39 UTC
Ракета-носитель Союз-ФГ/Фрегат
Стартовая площадка Байконур Пл. 31
Длительность полёта 11 месяцев
NSSDC ID
SCN
Технические характеристики
Платформа Карат
Масса 160 кг
Мощность 100-150 Вт
Срок активного существования 3 года
Элементы орбиты
Тип орбиты солнечно-синхронная круговая
Большая полуось 7191 км
98,9 °
Период обращения 101,1 мин
Апоцентр 819,6 км
Перицентр 806,0 км
Высота орбиты 815 км

МКА-ФКИ (ПН1) «Зонд-ПП»

— первый космический аппарат серии. Запуск изначально планировался на 2008 год, однако в результате задержек был отложен до июля 2012 года. Полезная нагрузка платформы — «Зонд-ПП» — российский малый спутник дистанционного зондирования земли, разработанный в НПО им. Лавочкина.

Эксперимент «Зонд-ПП» проводится ИРЭ РАН и предназначен для создания карт влажности почв и солености водных акваторий. Данные, полученные с аппарата, планируется использовать для изучения энергообмена океан-суша-атмосфера и прогнозирования изменений климата. Одним из основных инструментов спутника является 2-канальный радиометр L-диапазона.

Научная программа экспериментов была разработана в ИРЭ РАН на основе предложений российских организаций. При разработке программы использовался имеющийся в ИРЭ РАН опыт формирования научных программ исследований и экспериментов по космическим проектам «Природа», «Океан-О» № 1 и др. Основной вклад в разработку ключевых предложений по Научной программе экспериментов (приоритетные направления исследований, объекты исследований) внесли ИРЭ РАН, Институт космических исследований РАН, Институт океанологии имени П. П. Ширшова РАН.

Научные задачи, которые позволит решать информация с космического аппарата МКА-ПН1:

  • исследование температурно-влажностного состояния лесоболотных систем;
  • изучение биометрических характеристик растительности;
  • изучение солености водных акваторий;
  • исследование гляциальных и мерзлотных зон;
  • изучение энергообмена системы океан-суша-атмосфера;
  • исследование геотермальной деятельности;
  • картирование влажности почв.

Реализация Научной программы экспериментов позволит оценить эффективность СВЧ радиометрического метода определения влажности почв и биомассы растительности, солености морей из космоса (точность оценки влажности и биомассы, солености, пространственные и временные вариации параметров почв и растительности). Ожидаемое число возможных градаций в диапазоне изменений характерных величин влажности и биомассы – до 5, солености – до 3. Будут развиты необходимые модели и алгоритмы, отработана методика проведения соответствующих космических измерений, калибровки и валидации экспериментальных данных.

22 июля 2012 года ракета-носитель «Союз-ФГ» вывела МКА-ФКИ (ПН1) «Зонд-ПП» на целевую орбиту. Вместе с ним на орбиты были выведены «Канопус-В», Белорусский космический аппарат (БелКА-2), а также немецкий «TET-1» и канадский «exactView-1» (ADS-1b).

В ноябре-декабре 2012 года были завершены лётные испытания МКА-ПН1. В ходе испытаний — на основании регулярно получаемых заявок от ИРЭ РАН — производилась съёмка поверхности Земли с последующим сбросом целевой информации, для обработки которой велась калибровка целевой аппаратуры и отладка программного комплекса. Одновременно с радиометрической информацией в ИРЭ РАН передавались данные с четырёхзональной мультиспектральной камеры, установленной на спутнике для сопоставления видео- и радиометрических данных.

В начале июня 2013 года появились проблемы с управлением спутником «Зонд-ПП», предположительно связанные со сбоями в бортовом компьютере. Глава Роскосмоса Владимир Поповкин сообщил 11 июня 2013 года, что есть надежда на возвращение космического аппарата к нормальной работе. Директор НПО имени С. А. Лавочкина в интервью от 27 августа 2013 года заявил, что проблемы кроются в бортовом вычислительном комплексе, и комиссия по выяснению причин нештатной ситуации со спутником продолжает работу.

Космический аппарат был выведен из эксплуатации после сбоя произошедшего в июне 2013 года.

Что бьёт и убивает: ток или напряжение?

Опасность электричества не миф, хуже того, несмотря на всеобщую осведомленность об этом факте, практически каждый человек может сказать, что ему доводилось при каких-то обстоятельствах ощутить на собственной шкуре электрический удар. Исход подобного воздействия не обязательно плачевен, однако, опасность летального исхода – это неотъемлемый спутник халатного обращения с электричеством.

Именно поэтому на электроустановках устанавливают предупреждающие плакаты, например, «Высокое напряжение! Опасно для жизни!» или «Не влезай! Убьет!». В связи с чем у многих возникает путаница, что убивает ток или напряжение, чего же им стоит опасаться.

Для чего нужен расчет тока

Чтобы сделать расчет ампер по мощности для сетей переменного тока с реактивными нагрузками, нужны соответствующие коррекции. Такие потребители смещают вектор тока на 90° вперед (назад) по отношению к напряжению при емкостных (индуктивных) характеристиках, соответственно.

Расчет тока для однофазной сети

Изменение тока, напряжения и мощности по синусоидальному графику объясняет бессмысленность измерения моментальных значений. Параметры рассчитывают с учетом интервалов времени. Как правило, используют полный период одного колебательного цикла.

Генератор при существенном значении реактивной составляющей будет выполнять свои функции менее эффективно. Часть мощности в таком случае не будет выполнять полезную работу.

Расчет тока для трехфазной сети

Этот вариант можно представить, как комбинацию из нескольких однофазных сетей. В представлении векторами на комплексной плоскости будет виден фазовый сдвиг на 120°.

Рисунки демонстрируют напряжения 220 V в каждой фазе и линейное значение 380 V

Следует обратить внимание на ток в нулевом проводнике (I0), который не выполняет полезные функции. Он создается за счет неравномерного распределения подключенных нагрузок

Как рассчитать мощность тока

Для коррекции индуктивных (емкостных) составляющих применяют расширенную формулу расчета:

При отсутствии таких нагрузок принимают дополнительный множитель равным единице.

Эта таблица ампер поможет подобрать подходящий автомат (предохранитель) с учетом параметров подключенного оборудования.

Зависимость тока от мощности потребления

Номинальный ток защитного устройства, А Мощность потребления (кВт) для сети
Одна фаза Три фазы
2 0,4 1,3
6 1,3 3,9
16 3,5 10,5
25 5,5 16,4

Как пересчитать ватты в амперы

Для подключения электродвигателя нужно взять значение cos ϕ из сопроводительной документации. Эти данные дублируют в специальной бирке, закрепленной на корпусе. Как высчитать амперы для трехфазной сети, показывает следующая формула:

Проверочные задачи по теме: магнитное взаимодействие токов и сила Ампера

Задача 1. Докажите, что два параллельных проводника, в которых текут токи одного направления, притягиваются.

Вокруг любого проводника с током существует магнитное поле, следовательно, каждый из двух проводников находится в магнитном поле другого. На первый проводник действует сила Ампера со стороны магнитного поля, созданного током во втором проводнике, и наоборот. Определив по правилу левой руки направления этих сил, выясним, как вести себя проводники.

Определим направление силы Ампера, действующая на проводник А, находящегося в магнитном поле проводника В.

1) С помощью правила буравчика определим направление линий магнитной индукции магнитного поля, созданного проводником В (рисунок слева). Выясняется, что у проводника А магнитные линии направлены к нам (отметка «•»).

2) Воспользовавшись правилом левой руки, определим направление силы Ампера, действующая на проводник А со стороны магнитного поля проводника В.

3) Приходим к выводу: проводник А привлекается к проводнику В.

Теперь найдем направление силы Ампера, действующая на проводник В, находится в магнитном поле проводника А.

1) Определим направление линий магнитной индукции магнитного поля, созданного проводником А (рисунок справа). Выясняется, что у проводника В магнитные линии направлены от нас (отметка «х»).

2) Определим направление силы Ампера, действующая на проводник В.

3) Приходим к выводу: проводник В привлекается к проводнику А.

Ответ: два параллельных проводника, в которых текут токи одного направления, действительно притягиваются.

Задача 2. Прямой проводник (стержень) длиной 0,1 м массой 40 г находится в горизонтальном однородном магнитном поле индукцией 0,5 Тл. Стержень расположен перпендикулярно магнитных линий поля). Ток какой силы и в каком направлении следует пропустить в стержне, чтобы он не давил на опору (завис в магнитном поле)?

Стержень не будет давить на опору, если сила Ампера уравновесит силу тяжести. Это произойдет при следующих условиях:

  1. сила Ампера будет направлена ​​противоположно силе тяжести (то есть вертикально вверх)
  2. значение силы Ампера равна значению силы тяжести FA = Fтяж

Направление тока определим, воспользовавшись правилом левой руки.

Определим направление тока. Для этого расположим левую руку так, чтобы линии магнитного поля входили в ладонь, а отогнутый на 90 ° большой палец был направлен вертикально вверх. Четыре вытянутые пальцы укажут направление от нас. Итак, ток в проводнике следует направить от нас.

Учитываем, что FA = Fтяж. FA= BIlsinα, где sin α = 1; Fтяж = mg

Из последнего выражения найдем силу тока: I = mg/Bl

Проверим единицу, найдем значение искомой величины.

Ответ: I = 8 А; Ток в направлении от нас.

Подводим итоги

Силу, с которой магнитное поле действует на проводник с током, называют силой Ампера. Значение силы Ампера вычисляют по формуле: FA= BIlsinα, где B — индукция магнитного поля; I — сила тока в проводнике; l — длина активной части проводника; α — угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Для определения направления магнитной силы Ампера используют правило левой руки: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь, а четыре вытянутые пальцы указывали направление тока в проводнике, то отогнутый на 90 ° большой палец укажет направление силы Ампера.

Решебник к сборнику задач по физике для 7- 9 классов, Перышкин А.В.

997. Выразите в амперах силу тока, равную: 200 мА; 15 мкА; 8 кА.

998. Укажите ошибку на схеме рисунка 98.

Амперметр включается в цепь последовательно.

999. Через нить электрической лампочки за 2 с проходит заряд 0,4 Кл. Какова сила тока в лампочке?

1000. Сила тока в проволоке равна 40 мкА. Какой электрический заряд проходит через поперечное сечение проволоки за 20 мин? Запишите ответ в кулонах, милликулонах, микрокулонах.

1001. Какой заряд пройдет через поперечное сечение электрической цепи водонагревателя в течение 3 мин работы при силе тока 5 А?

1002. Сколько электронов проходит через поперечное сечение электрической цепи электроутюга за 1 мс работы при силе тока 3,2 А?

1003. Какой заряд проходит через поперечное сечение спирали электроплитки за пять минут работы, если сила тока в цепи равна 1,2 А?

1004. Электрическая лампочка работает семь минут при силе тока в цепи 0,5 А. Сколько электронов проходит через поперечное сечение спирали электролампочки за это время?

1005. Скорость направленного движения электронов проводимости в проводниках относительно невысока — несколько миллиметров в секунду. Однако электролампа зажигается одновременно с поворотом выключателя. Почему?

Потому что электромагнитное поле, которое заставляет двигаться электроны, распространяются мгновенно вдоль всего проводника.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector